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Minimal Coupling and Feynman’s Proof

Merced Montesinos1,2 and Abdel PeÂrez-Lorenzana3
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The non quantum relativistic version of the proof of Feynman for the Maxwell
equations is discussed in a framework with a minimum number of hypotheses
required. From the present point of view it is clear that the classical equations
of motion corresponding to the gauge field interactions can be deduced from the
minimal coupling rule, and we claim here resides the essence of the proof
of Feynman.

1. INTRODUCTION

The proof of Feynman for the Maxwell equations presented in Dyson’ s

paper (Dyson, 1990) was never published by Feynman himself because from

his point of view the proof provides no new information about the classical

or quantum nature of the electromagnetic field. Even though the proof is

mathematically right, there are mixing physical inputs. First of all, the proof

is based on the second law of Newton, which is a classical relation. Second,

the quantum commutators between position and momentum are assumed

(Dombey, 1991; Brehme, 1991; Anderson, 1991; Farquhar, 1991). Third, the

framework is Galilean. Therefore, is quite surprising that with this information

pure relativistic equations of motion emerge from this formalism. This is in

fact the main result of the proof of Feynman. It is important to emphasize

that the proof reproduces only the homogeneous Maxwell equations, which

in fact are compatible with Galilean relativity (Vaidya and Farina, 1991).
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On the other hand, Dyson claims that the proof has a remarkable property

in that it shows that the physics involved in the assumptions concerns only

the homogeneous Maxwell equations. There are some results which show
that Feynman’ s proof can be extended to the non-Abelian gauge fields (Lee,

1990) within a relativistic framework (Tanimura, 1992). Nevertheless, these

last proposals have the same mixed physical inputs as the original proof

(Farquhar, 1990). A straightforward extension was reviewed recently by

Bracken (1998), who gave a derivation of the homogeneous Maxwell equa-

tions from a postulated set of Poisson brackets instead of the quantum commu-
tators (just like Hughes, 1992). Bracken also proposed an extended formalism

by postulating a set of relativistic Poisson brackets. Nevertheless this approach

is, on one hand, non-manifest ly covariant, and on the other hand, it is unable

to derive the nonhomogeneous Maxwell equations, even though the field

tensor may be built.

At this point, it seems that the most important physical property associ-
ated with the dynamics of a particle under the action of a gauge field is

missed in all these approaches, the minimal coupling rule. It contains all the

information of the sources and fields, and therefore it is a more natural starting

point. In fact, it is equivalent to the assumptions involved in Feynman’ s proof,

but it has the advantage of having a clear physical meaning; this is our main
claim. Nothing of this seems to be new; however, this proof has attracted

interest in the community because of its relationship to some fundamental

aspects of physics. Thus our main motivation for giving the proof again is

to illuminate its physical basis.

In keeping with this goal, our proof uses the minimum of hypotheses.

It is based on the assumption that the minimal coupling rule holds. No
quantum commutations relations are assumed. Section 2 reviews the original

proof, Section 3 shows that Feynman’ s hypothesis can be obtained from the

minimal coupling rule for a relativistic particle. So from the perspective of

the present approach the validity of the minimal coupling rule is the essential

element underlying Feynman’ s construction. Using the results of this section,

we exhibit our approach explicitly in Sections 5 and 6, where the electromag-
netic and the non-Abelian fields are considered, respectively.

2. FEYNMAN’S PROOF

We begin by reviewing the Feynman’ s proof. Essentially we follow the
same approach as in Dyson (1990); our notations and conventions are the

same. Let us consider a free particle with position and velocity xi and xÇ i 5
dxi/dt, respectively. Then Newton’ s second law holds:

mxÈ j 5 Fi (x, xÇ , t) (1)
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Also the quantum commutation relations are assumed:

[xj , xk] 5 0, m[xj , xÇ k] 5 i " d jk (2)

Then (1) and (2) imply

[xj , Fk] 1 m[xÇ j , xÇ k] 5 0 (3)

Now because [xj , Fk] is skew symmetric in the pair j and k, it allows us to

introduce the auxiliary field Hl through

[xj , Fk] 5 2
i "
m

e jklH l (4)

and by using the Jacobi identity [xl , [xÇ j , xÇ k]] 1 xÇ j , [xÇ k , xl] 1 [xÇ k , [xl , xÇ j]] 5
0 together with (2) and (3), is straightforward to see Hl depends only on x
and t because [xl , [xj , Fk]] 5 0, or which is the same,

[xl , Hm] 5 0 (5)

It is convenient to define a new field Ej by employing the relation

Fj 5 Ej 1 e jklxÇ kHl (6)

which from (2), (4), and (5) satisfies [xm , E j] 5 0, which means it does not

depend on xÇ . On the other hand, by using (3) and (4), we can get for Hl

Hl 5
m2

i2 "
e jkl[xÇ j , xÇ k] (7)

which together with the Jacobi identity allows us to obtain

- H l

- xl

5 [xÇ l , H l] 5
m2

i2 "
e jkl[xÇ l , [xÇ k , xÇ j]] 5 0 (8)

Next we take the total derivative of (7) with respect to t,

- Hl

- t
1 xÇ m

- Hl

- xm

5
m2

i "
e jkl[xÈ j , xÇ k] (9)

Finally, from (1) and (6) the RHS of (9) can be written as

m

i "
e jkl[Ej 1 e jmnxÇ mHn , xÇ k]

5
m

i "
( e jkl[Ej , xÇ k] 1 [xÇ k Hl , xÇ k] 2 [xÇ l Hk , xÇ k])

5 e jkl

- Ej

- xk

1 xÇ k
- Hl

- xk

1 xÇ l
- Hk

- xk

1
m

i "
Hk[xÇ l , xÇ k] (10)
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In the last expression the third and fourth terms vanish because of (7) and

(8). Therefore, by putting (10) in (9), we obtain Faraday’ s induction law,

- Hl

- t
5 e jkl

- Ej

- xk

(11)

End of the proof.

Now, here it is important to make some remarks. First, note that the

Galilean version of the Lorentz law, Eq. (6), has been explicitly used. More-
over, (2) means we are using a quantum framework. In other words, there

are two mixed inputs: classical and quantum descriptions are combined in

Feynman’ s proof. Even though these two classical and quantum aspects are

taken into account, the result is amazing. The main result of the Feynman’ s

proof is that, from quantum commutators [Eq. (2)] and the quantum version

of the Newtonian force (Tanimura, 1992), the equations of motion for the
fields are the homogeneous Maxwell equations. The proof can be extended

to the case of non-Abelian gauge fields both in Newtonian (Lee, 1990) as

well as in relativistic (Tanimura, 1992) dynamics. It is clear that because of

the nature of the fields only the relativistic approach allows the construction

of all equations of motion for the fields. Note also that Feynman’ s proof

requires only the quantum commutation relations (Hughes, 1992), which for
the purposes of the proof can be substituted by their classical version, the

Poisson brackets. This key property raises the possibility of constructing a

nonquantum version of the proof in the framework of special relativity with

a minimum of hypotheses: the minimal coupling rule.

3. RELATIVISTIC CASE

Let us consider a relativistic particle with rest mass m in an inertial
frame under the action of an external force in such a way that the generalized

momentum satisfies the minimal coupling rule (see, for instance, O’ Raifear-

taigh, 1997)

p m 5 mxÇ m 1 A m (x, p ) (12)

where p m is the canonical momentum of the particle, which has the contribu-

tion of the fields through the potential A m . In a general situation A m might

depend on the velocity of the particle or, which is the same, on the components

of the canonical momentum. Consequently, the physical gauge fields will be

deduced from particular restrictions on this dependence, as we shall show in
the next sections. In fact, the proof we present below is totally general.

From now on, we will denote the derivative with respect to the proper

time t as well as the derivatives with respect to the canonical coordinates of

a phase space function f(x, p ) by
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fÇ [
df

d t
, - m [

-
- x m

, - Å m [
-

- p m
(13)

In this way, the Poisson bracket is given by

{ f, g} [ h r s ( - r f - Å s g 2 - r g - Å s f ) (14)

where h r s is the Minkowski metric.
Instead of taking Feynman’ s hypothesis, we are going to assume that

the relation (12) holds. In other words, the relation (12) is put on a fundamental

level, and using it, we shall show that the equations of motion for the fields,

and the interaction law with a test particle, can be deduced without any

additional assumption. So the present approach shows that the minimal cou-

pling rule has all the dynamic information of the system.
From the definition of the Poisson brackets and the minimal coupling

rule we get the relationship

m{x m , xÇ n } 5 h m n 2 - Å m A n (15)

which is the analog of (2) in the nonrelativistic case. Taking the derivative

of (15) with respect to the proper time t , we have

m
d

d t
{x m , xÇ n } 5 m{xÇ m , xÇ n } 1 m{x m , xÈ n } 5 2

d

d t
( - Å m A n ) (16)

Now, using the Jacobi identity for {x n , {xÇ m , xÇ r }} and (15), one obtains

m{x n , {xÇ m , xÇ r }} 1 {xÇ m , - Å n A r } 1 { - Å n A m , xÇ r } 5 0 (17)

which means that the quantity {xÇ m , xÇ r } depends on the derivative of x through

the implicit dependence of A m on p m . This is the most general situa-
tion [compare with Eq. (5)]. Following Feynman, we define the skew-

symmetric tensor

2
1

m
F m n [ 2 m{xÇ m , xÇ n } 5 m{x m , xÈ n } 1

d

d t
( - Å m A n ) (18)

which, after it is expanded, takes the form of the tensor associated to the

gauge field A m

F m n 5 ( - m A n 2 - n A m ) 1 {A m , A n } (19)

Notice that the last term of (19) must vanish for the electromagnetic case

(see next section). In general it suggests the right form of the non-Abelian

gauge field tensor. Taking the derivative with respect to x a , we obtain the

following relation:
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- a F m n 1 - m F n a 1 - n F a m 5 - a {A m , A n } 1 - m {A n , A a } 1 - n {A a , A m } (20)

which suggests the definition of a ª covariant derivativeº of the form
D a F m n [ - a F m n 2 {F m n , A a }. This implies (20) can be written as

D a F m n 1 D m F n a 1 D n F a m 5 0 (21)

The former expression corresponds in general to the homogeneous field

equations. This identity is in fact equivalent to the equations obtained from

the usual approaches (Dyson, 1990; Lee, 1990; Hughes, 1992; Tanimura,

1992; Bracken, 1998). Now, since - m - n F m n 5 0 holds, there must exist a

conserved current given by

j m [ - n F m n (22)

which as usual can be identified as the source of the fields (Jackson, 1975).
Therefore, the last equation corresponds to the nonhomogeneous field equa-

tion, which is not obtained in the original scheme by Feynman (Dyson, 1990),

nor in the extended versions of the proof (Lee, 1990; Hughes, 1992; Tanimura,

1992; Bracken, 1998). This is the most relevant equation, for it defines the

dynamics of the fields (Jackson, 1975). Now, starting from (18), which defines
F m n , we note that the relation

F m n xÇ
n 5 H mxÇ m ,

1

2
mxÇ n xÇ

n J (23)

holds, which suggests including the Hamiltonian of the system (Goldstein,

1980)

H 5
1

2m
( p 2 A)2 5

1

2
mxÇ n xÇ

n (24)

and obtaining a generalized Lorentz law

F m n xÇ
n 5 mxÈ m (25)

In summary, starting only from the minimal coupling rule (12), we were able

to obtain the tensor of the interaction fields F m n as well as the equation of

motion of a test particle (25) and the analog to the field equations [Eqs. (21)

and (22)]. In the next two sections we will apply explicitly this method to
both the Abelian and non-Abelian cases.

4. THE ABELIAN CASE: ELECTROMAGNETIC FIELD

The electromagnetic case is the simplest one. Let us take the following

restriction on the fundamental hypothesis [given by Eq. (12)]:
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A m 5 A m (x) (26)

i.e., - Å m A n 5 0, which means, for the present case, that (15) reduces to

m{x m , xÇ n } 5 h m n (the usual starting point of Feynman’ s proof. Note also that

{A m , A n } 5 0 holds. Therefore, (19) allows us to define the electromag-

netic tensor

F m n (x) 5 - m A n 2 - n A m (27)

which satisfies the Bianchi identity [obtained from (20)]

- m F n a 1 - n F a m 1 - a F m n 5 0 (28)

which corresponds to the homogeneous Maxwell equations. The equations

with sources can be obtained from j m [ - n F m n in (22). Explicitly, as usual,
Ei 5 F0i and Hi 5 FÄ 0i, where FÄ m n 5 1/2 e m n a b F a b is the dual tensor, and i 5
1, 2, 3. Consequently, the electromagnetic fields are defined by E 5
2 - 0A 2 ¹ A0 and H 5 ¹ 3 A.

Note also that the Lorentz law is clearly (25). We have used explicitly

the Hamiltonian of the test particle in order to obtain this equation of motion,

but this expression can be obtained by integrating (18) with respect to p m .
In summary, we have obtained the complete set of the Maxwell equations

and the Lorentz law for the test particle (without assuming it from the

beginning) just starting from the hypothesis (26). It is important to emphasize

this property, of the present approach, because it is not shared by the Feyn-

man’ s proof (Dyson, 1990) nor its direct extensions (Lee, 1990; Hughes,
1992; Tanimura, 1992; Bracken, 1998). In others words, the four Maxwell

equations (with sources and without magnetic monopole terms) emerge in a

natural way if a coupling of the form (26) is assumed, which means that A m

does not depend on the velocity of the test particle. Therefore, all the dynamic

information of the system is contained in the minimal coupling rule, as

we claimed.

5. THE NON-ABELIAN GAUGE FIELDS

As we noted above, the general form of the field tensor [Eq. (19)] is

that of the non-Abelian case. It suggests that the classical non-Abelian gauge

field equations could be obtained from the minimal coupling rule through a

special condition over {A m , A n }. Basically we have to note that in the classical

approach the non-Abelian fields may be treated by introducing new internal
degrees of freedom, such as the isospin, in such a way that the Hamiltonian

would depend on some other non spacetime variables. Some steps in this

direction were made by Lee (1990) and Tanimura (1992) and recently dis-

cussed in a relativistic context by Bracken (1998).
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Let us consider as the canonical coordinates of the test particle those

which belong to a (d 1 n)-dimensional space, where d is the spacetime

dimension and n is the internal space dimension (for instance, isospin), which
is necessary to ª balanceº the momentum due to the external interaction. We

use the following notations and conventions: V , L 5 0, 1, . . . , d, . . . , d 1
n; a , m , n 5 0, 1, . . . , d; and a, b, c 5 d 1 1, . . . , d 1 n; in such a way

that all the results obtained in the Section 3 hold on the indices V , L .

Next, let us assume the dependence on the canonical coordinates of A V

is such that it is separable, and can be written in the form

A V 5 A V (x L , p a) 5 A V a(x m )Ia(xb , p b) (29)

which means it does not depend on the canonical momentum associated to

the spacetime coordinates. Also let us assume that Ia satisfies

{Ia, Ib} 5 2 f ab
cI

c (30)

where f ab
c are the structure constants corresponding to the Lie algebra of the

Lie group locally generated by the quantum operators associated to the

functions Ia.

Note that due to the separation of the coordinates, the Poisson brackets

can be written in the form {A, B} 5 {A, B}esp 1 {A, B}int where ª espº and ª intº

mean spacetime and internal space, respectively. Under this consideration and

taking (29) into account, we will have {A V , A L } 5 A V a A L b {Ia, Ib}, for the
spacetime part of the bracket vanishes. Hence, expressing the equations only

in the spacetime coordinate sector, we find that (19) can be written as F m n 5
( - m A n c 2 - n A m c 2 A m aA n b f ab

c)I
c, from which it is natural to interpret the

term between brackets in the former equation as the Yang ± Mills field tensor

given by

F m n c [ - m A n c 2 - n A m c 2 A m aA n b f ab
c (31)

Note that because A V does not depend on p n , the equation of motion (25)

can also be obtained by integrating (18), acquiring the form

mxÈ m 5 F m n aI
axÇ n 1 G m aI

a (32)

which is the first Wong equation for the non-Abelian gauge fields. As we

shall see, the last term in the equation above, absent from (25), may be
identified as a gauge term (see last part of this section).

On the other hand, the covariant derivative can be defined as

(D a F m n )c [ - a F m n c 2 f ba
cA a bF m n a (33)

implying the Bianchi identity

(D a F m n )c 1 (D m F n a )c 1 (D n F a m )c 5 0 (34)
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Also from IÇ a 5 {Ia, H } 5 mxÇ m {Ia, xÇ m } and

m{Ia, xÇ m } 5 A m bI
cf ab

c (35)

we get the second Wong equation

IÇ a 2 f ab
cA n bxÇ n Ic 5 0 (36)

or equivalently {x m , (IÇ a 2 f ab
cA n bxÇ n Ic)} 5 0. Finally, from (35) we obtain the

usual expression for functions of the type f a(x):

m{xÇ m , f a(x)Ia} 5 2 { - m f a 2 f bc
aA m b f c}Ia 5 2 (D m f )aI

a (37)

In particular, G m [ G m aI
a satisfies m{xÇ m , G n } 5 2 (D m G n )aI

a, which together

with the two Wong equations implies G m is a gauge term because

(D m G n )a 2 (D n G m )a 5 0 (38)

holds.

6. CONCLUDING REMARKS

We summarize the above results as follows. Even though Feynman’ s

proof fails because it provides no new physics, the proof is successful because

it reduces the laws of the gauge interactions in the sense that they can be

obtained from only the minimal coupling postulate. This fact is not only an

economical choice, but it has a deeper meaning which for the present analysis

signifies that the fundamental dynamic equations, the field equations, and
the motion equation of the test particle (the Lorentz law) just come from

the minimal coupling rule between the potential and the linear momentum.

However, this fundamental fact is unclear (and missed in the discussions) of

the approaches that start from postulating the quantum commutators or the

equivalent Poisson brackets.

On the other hand, it is important to emphasize some aspects of the
present approach. First, we are in the framework of relativistic classical

mechanics. Second, a quantum point of view has not been adopted, so the

relationship with quantization schemes should be analyzed carefully. In partic-

ular, the relationship with the Dirac method (Dirac, 1964) would be interesting

to study because of the implicit dependence of the gauge fields on the

momenta [see (12)]. We are aware that the present approach might be introduc-
ing second-class constraints in a quantum analysis (as in QED). If this were

the case, a more careful treatment should be given if a quantization based

on the present approach is considered. These conjectures are beyond the

scope of the present paper, but they should be clarified.
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